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Abstract. A cellular automata approach to non-equilibrium phase transitions in a surface 
reaction model is proposed. This surface reaction model describes a simple adsorption- 
dissociation-desorption on a catalytic surface. This model exhibits two second-order 
non-equilibrium phase transitions. The stationary critical exponents for the order para- 
meters p as well as dynamical critical exponents A,  describing the critical slowing down, 
are found to be mean-field-like. 

1. Introduction 

Non-equilibrium dynamical systems can exhibit complicated behaviour, including the 
formation of dissipative structures, temporal and spatial oscillations, and non-equili- 
brium phase transitions (Haken 1975). Moreover, there is no first principle theory to 
describe the properties of such non-equilibrium systems. Accordingly, the study of 
the behaviour of particular systems may be very useful. 

A simple example of a system exhibiting non-equilibrium phase transitions is given 
by a surface reaction model in which two species can be adsorbed on a surface on 
which they chemically react. The product of the chemical reaction is desorbed and 
thus the heterogeneous catalysis process is regenerated. Models for such systems have 
been proposed by Ziff et al (1986) and Schlogl (1972). 

Theoretically such systems are usually described in terms of non-linear reaction 
rate equations for the averaged concentration of each species. However, within this 
approach, the local fluctuations are totally neglected. In equilibrium statistical 
mechanics, it is well known that the fluctuations play a crucial role in the vicinity of 
a second-order phase transition (Ginzburg 1960). Accordingly, it seems important to 
keep the fluctuations to study the non-equilibrium phase transitions as well. 

The cellular automaton (CA) approach offers a way to follow the dynamical 
evolution and keep track of all the microscopic degrees of freedom. Cellular automaton 
theory describes a universe consisting of an homogeneous array of cells. Each cell is 
endowed with a finite number of states and evolves in discrete time according to a 
uniform local rule (Wolfram 1986). All the cells compute their new state simultaneously. 
Computation can be performed on very fast special purpose computers with parallel 
architecture. Moreover, the result of the computation is exact in the sense that no 
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rounding errors (which can play an important rule for non-linear dynamics) affect the 
result. 

The goal of this paper is to propose a cellular automata model for the surface 
reaction problem introduced above. Static and dynamic properties of this CA model 
are studied. The phase diagram shows two different second-order non-equilibrium 
phase transitions separating phases with zero rate production of the reactant from 
phases with finite production rate. It is thus possible to study the static and  dynamic 
critical behaviour of such non-equilibrium phase transitions. The critical exponent /3 
describing the behaviour of the order parameter associated with the two second-order 
transitions is found to be mean-field-like, i.e. /3 

The dynamics of the model is also considered and, in particular, we study how an  
initial state relaxes towards its stationary value. The corresponding relaxation time T 
is shown to diverge in the vicinity of the second-order transition (critical slowing 
down). The critical exponent A characterising this divergence turns out to be mean- 
field-like, i.e. A = 1. 

The paper is organised as follows. In § 2, the surface reaction model is defined, 
and its modelisation in terms of CA given. In § 3 the results of the simulation are 
quoted. These results are discussed in 0 4. 

0.5. 

2. The model 

The surface reaction model that we consider is similar to the one proposed recently 
by Ziff et a1 (1986). Differences between the two models will show u p  through the 
modelisation in terms of CA. These reaction models are based upon some of the known 
steps of the reaction A-B2 on a catalyst surface (for example CO-02). The basic steps 
in heterogeneous catalysis are the following. 

(i) A gas mixture with concentrations XB2 of B2 and XA = (1 - XB2) of A sits above 
the surface and  can be adsorbed. The surface can be divided in elementary cells. Each 
cell can absorb one atom only. 

(ii) The B species can only be adsorbed in the atomic form. A molecule B2 
approaching a n  empty cell will be dissociated into two B atoms only if another cell 
adjacent to the first one is empty. The two first steps correspond to the reactions 

A + A( ads) B2 + 2B(ads). 
(iii) If two nearest-neighbour cells are occupied by different species they chemically 

react according to the reaction 

and  the product of the reaction is desorbed. This final desorption step is necessary 
for the product to be recovered and for the catalyst to be regenerated. However, the 
gas above the surface is assumed to be continually replenished by fresh material. Thus 
its composition is constant during the whole evolution. 

Note that this model neglects several features which may be present in a real 
situation. For example, there may be a substantial diffusion and reassociation of the 
reacting species ( B +  B += B,) or  desorption of the unreacted species, 

A( ads) + B( ads) += AB 

2.1. Cellular automaton realisation 

In view of the above description, it seems natural to represent the problem in terms 
of a two-dimensional cellular automaton. 
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The cells of the automaton correspond to the elementary cells of the catalyst. Each 
cell j can be in four different states 14,) = IO), IA), IB) or IC). 

10) corresponds to an  empty cell, lA) to a cell occupied by an atom A and IB) to 
a cell occupied by an atom B. The state IC) describes the conditional occupation of 
the cell by an atom B. Conditional means that during the next evolution step of the 
automaton, IC) will become IB) or 10) depending upon the fact that a nearest-neighbour 
cell is empty and  ready to receive the second B atom of the  molecule Bz.  This conditional 
state is necessary to describe the dissociation of the Bz molecules on the surface. 

The time evolution of the CA is given by the following set of rules, fixing the state 
of the cell j at time t + 1, l4,)( t +  l ) ,  as a function of the state of the cell j and its 
nearest neighbours (von Neumann neighbourhood) at time t :  

R1. If l i+b,)(f) = 10) then 
with probability XA 
with probability (1  - XA). 

R2. I f  i$,)(t) = IA) then 
if at least one of the nearest-neighbour cells 
of j was in the state IB) at time t l$,)(t+ 1) = 

[I:) otherwise. 

[ ::) otherwise. 

[:I) otherwise. 

R3. If li,b,)(t) = / B )  then 

if at least one of the nearest-neighbour cells 
of J was in the state lA) at time t I $, ) ( t + 1 1 = 

R4. If I$,)( t )  = IC) then 
if none of the nearest neighbours was 
in the state IC) at time t l$,)(t+l)= 

Rule R4 expresses the fact that the atoms of B2 can be adsorbed only if they have 
been dissociated on two adjacent cells, i.e. if at least two adjacent cells were empty at 
time t - 1. 

Rules R1 and R4 describe the adsorption-dissociation mechanism while, rules R2 
and  R3 describe the reaction desorption process. Note that the above rules d o  not 
reproduce exactly the physics described above which corresponds to the Ziff model. 
Indeed, a given cell occupied at time t by a B atom can take part simultaneously in 
the formation of several AB pairs; the situation is similar for the A atoms, and thus, 
on the average, there is no bias introduced between the A and B atoms by this 
mechanism. However, in our model three adjacent B atoms can be adsorbed, a situation 
not allowed in the Ziff model. These difficulties are intimately related to the fact that 
all the cells are updated simultaneously in a CA.  

As the concentration XA of the gas varies, different stationary states of the catalysis 
surface can be foreseen. If XA is large the surface will be completely covered by the 
A atoms after some time. The small fraction of B atoms originally adsorbed will rapidly 
be eliminated through the desorption of AB. The stationary state will consist of a 
‘poisoned’ catalysis of pure A. If XA is small we have the opposite situation and the 
stationary state will consist of a ‘poisoned’ catalysis of pure B. Obviously, once the 
surface is poisoned by a species, the reaction rate for the creation of AB is zero. 
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For an intermediate value of XA, a more interesting situation can occur in which 
the stationary state is a mixed state composed of a fraction X i  of atoms A, a fraction 
Xg of atoms B and a fraction X: of empty cells. The adsorption-dissociation mechan- 
ism compensates for the desorption process. The reaction rate is obviously finite in 
this intermediate region. 

It is thus possible to determine the phase diagram of this system, i.e. we can predict 
what will be the stationary state reached from a given concentration XA. 

It is hopeless to solve this problem analytically and so numerical simulations have 
been performed; they are discussed in the next section. 

3. Results of the numerical simulation 

The CA model defined in P 2 has been simulated on a special purpose machine CAM-6 
(Toffoli and Margolus 1987) having 256 x 256 sites with periodic boundary conditions. 
At time t = O  a randomly prepared mixture of gas with fixed concentration of one 
species (X,) sits on top of the surface. All the cells are initially empty (state IO)). The 
evolution starts following the rules defined in P 2. The rules are iterated many times 
until a stationary state is reached. The stationary state is a state for which the mean 
coverage fractions X i  and X i  of atoms of type A or B do not change in time, although 
microscopically the configurations of the CA can still change. From a few hundred to 
25 000 iterations were needed to reach stationarity depending upon the value of XA. 
In order to reduce the fluctuations due to the random initial conditions, the results 
have been averaged over 35 different samples. 

The resulting phase diagram is shown in figure 1. For X,~0.6515*0.0004=XA, 
the stationary state is ‘poisoned’ with A. For X, S 0.5761 * 0.0004 = XAZ the stationary 
state is poisoned with B. At XA, and XAZ one has two non-equilibrium phase transitions 

P A  P E  

Figure 1. Stationary state phase diagram. X ,  is the concentration of the A species of the 
gas sitting above the catalyst. Xi and X i  are the fractions of A and B adsorbed, respectively, 
X,, and X,,  are the two critical concentrations. PA and PB denote phases poisoned in A 
and B, respectively. 
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in the sense that, in the mixed phase, the coverage concentration varies continuously 
as a function of XA at the transitions. We have also determined how the coverage 
fraction X i  goes to zero (or one) near the transition points. The distances from the 
critical points are determined respectively by the parameters = (XA, - X A ) / X A l ,  

& 2 =  ( X A - X A 2 ) / X A Z *  

Fitting the data in the range 8 x < E~ < 5 x one finds that 

$ I =  x i ( x A l ) - x i ( x A ) - & Y '  ( 1 )  

with p ,  = 0.55 i0.05. 

exponent for the order parameter. 
can be identified with the order parameter. PI  is then the stationary critical 

For the second transition, associated to the order parameter G2, one has 

with 

p2 = 0.45 * 0.05 for 2 x 1 0 - ~  < e2 < ( 2 )  

Although the determination of these exponents is not very precise (the precision could 
be improved by averaging over more samples), the two values obtained are compatible 
with a classical or mean-field exponent p = i. 

Interesting information can also be obtained concerning the dynamics. In equili- 
brium statistical mechanics, it is known that a system initially in a non-equilibrium 
state will decay towards its equilibrium one usually exponentially. The decay is 
characterised by a relaxation time 7. When approaching a second-order phase transi- 
tion, this relaxation time diverges (critical slowing down) as 

(3) - A  
7 - E  

where E is the reduced temperature, i.e. the distance from the critical point, and A is 
the dynamical critical exponent. A lot of effort has been devoted to the determination 
of A in several models and attempts have been made to define dynamical universality 
classes (Hohenberg and Halperin 1977). 

A similar situation is present in non-equilibrium phase transitions. Our cellular 
automaton model allows us to compute the non-equilibrium dynamical critical exponent 
A. The numerical procedure adopted is the following. For a fixed value of XA, one 
computes X i (  t )  or Xg( t )  depending on the critical point considered. Then the data 
are fitted with the following decay law: 

x:(t) = [x",o)-x:(=))l e x p [ - t / 7 ( X A ) l + X : ( ~ )  (4) 

with a = A  or B. 
Data are averaged over ten samples in order to reduce the statistical errors. One 

observes a crossover between two different regimes: an early-time one characterised 
by a rapid relaxation and a long-time one characterised by the relaxation time 7(XA). 

Near the transition points, the relaxation times are fitted with the following law: 

7, ( X A )  - E,-"' ( 5 )  

where j = 1, 2 labels the two transitions. 
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The values obtained for Ai are the following. When approaching the transitions 
E , , ~  < 

A2 = 1.03 * 0.10. (6) 

Within the errors bars, both values are compatible with a mean-field value A =  1 
(Dickman 1987). 

When approaching the transitions from the ‘ordered’ phase, i.e. non-poisoned, one 
finds 

from the ‘disordered’ phase, i.e. the poisoned ones, one finds, for 9 x 
3 x lo-z, 

A ,  = 0.98 * 0.08 

A ,  = 1.02*0.15 AI = 0.84* 0.15 (7) 

again compatible with the mean-field value. 

4. Concluding remarks 

The above results show that the cellular automata approach is well suited to studying 
the surface reaction model. Not only can the phase diagram be obtained with a good 
precision, but information about some static and dynamical critical exponents can be 
obtained. 

The striking feature is that both static and dynamic exponents are, within the 
precision of the simulation, mean-field-like. Similar findings, have been obtained in 
two other problems dealing with non-equilibrium phase transitions. Katz et a1 (1984) 
have investigated, theoretically and numerically, the stationary non-equilibrium states 
of a stochastic lattice gas under the influence of a uniform external field. A slightly 
different version of this model, for which stationary states can be found exactly, has 
been proposed by van Beijeren and Schulman (1984). They were able to show that 
static exponents describing the gas-liquid transition were mean-field-like. 

On the other hand, Onuki and Kawasaki (1979) have studied the effect of a uniform 
shearing on a fluid. They showed that, independently of the value of the shearing, the 
character of the liquid-gas transition changes immediately to become mean-field-like. 

What could be the reason in our model for the mean-field character of the non- 
equilibrium transitions? One important ingredient of our model is the gas mixture 
sitting above the catalytic surface. This gas has its own independent dynamics. Accord- 
ingly, a cell on the surface sees above it, during the time evolution of the CA, a random 
succession of A and B species (with, however, a given probability). This kind of 
stirring is efficient enough to suppress the short-range correlation between the cells of 
the surface, hence explaining the mean-field behaviour. 

In view of the known particular examples, i t  is reasonable to ask the following 
questions: do dynamical universality classes for these non-equilibrium systems exist 
and, if the answer is affirmative, what are the characteristics of the universality class 
with classical exponents? These questions will be addressed in a further publication. 
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